Introduction to Data Mining and Knowledge Discovery

четверг, 10 декабря 2009, Александр Краковецкий

Content:

Introduction

  • Data mining: In brief
  • Data mining: What it can’t do
  • Data mining and data warehousing
  • Data mining and OLAP
  • Data mining, machine learning and statistics
  • Data mining and hardware/software trends
  • Data mining applications
  • Successful data mining

Data Description for Data Mining

  • Summaries and visualization
  • Clustering
  • Link analysis

Predictive Data Mining

  • A hierarchy of choices
  • Some terminology
  • Classification
  • Regression
  • Time series

Data Mining Models and Algorithms

  • Neural networks
  • Decision trees
  • Multivariate Adaptive Regression Splines (MARS)
  • Rule induction
  • K-nearest neighbor and memory-based reasoning (MBR)
  • Logistic regression
  • Discriminant analysis
  • Generalized Additive Models (GAM)
  • Boosting
  • Genetic algorithms
  • The Data Mining Process
  • Process Models
  • The Two Crows Process Model

Selecting Data Mining Products

  • Categories
  • Basic capabilities

Summary

PDF file is attached to the post.


Ищите нас в интернетах!

Комментарии

Свежие вакансии